Saturday, 24 November 2012

Fractal Robots: Self Repairing ability

 SELF REPAIR

        There are three different kinds of self repair that can be employed in a fractal robot. The easiest to implement is cube replacement.




Figures 1 to 4 illustrates some images taken from an animation.


Figure 1

        In respect of self repair, the animations show how a 
walking machine that has lost a leg rebuilds itself by shifting cubes around from its body. Some of the intermediate steps are illustrated across figures.

  Figure 2


                                          Figure 3

Regardless of how many cubes are damaged, with this self repair algorithm, cubes can detach further and further back to a known working point and then re-synthesize lost structures. The more cubes there are in the system, the more likely the system can recover from damage. If too many cubes are involved, then it will require assistance from a human operator. In such circumstances, the system will stop until an operator directs it to take remedial actions.
Figure 4

        Systems designed with fractal robots have no redundancy despite having built in self repair. Every cube in a system could be carrying tools and instrumentation and thus loss of any one cube is loss of functionality. But the difference in a fractal robot environment is that the cubes can shuffle themselves around to regain structural integrity despite loss of functionality.

        In space and nuclear applications (also in military applications), it is difficult to call for help when something goes wrong. Under those circumstances, a damaged part can be shuffled out of the way and a new one put in its place under total automation saving the entire mission or facility at a much lower cost than simply allowing the disaster to progress. The probability of success is extremely high in fact. Take for example a triple redundant power supply. Although the probability of each supply failing is same as the norm for all power supplies of that type, the chances of more than one failing is very much less. By the time a third power supply is added the probability becomes miniscule. The same logic applies to fractal robots when restoring mechanical integrity. Since there are hundreds of cubes in a typical system, the chance of failure is very remote under normal circumstances. It is always possible to redundant tools and then functional integrity can also be restored. This technique gives the highest possible resilience for emergency systems, space, nuclear and military applications.

        There are other levels of repair. A second level of repair involves the partial dismantling of cubes and re-use of the plate mechanisms used to construct the cubes.For this scheme to work, the cube has to be partially dismantled and then re-assembled at a custom robot assembly station. The cubic robot is normally built from six plates that have been bolted together. To save on space and storage, when large numbers of cubes are involved, these plates mechanisms can be stacked onto a conveyor belt system and assembled into the whole unit by robotic assembly station as notionally illustrated in figure 11. (By reversing the process, fractal robots can be dismantled and stored away until needed.)


Figure 11

        If any robotic cubes are damaged, they can be brought
back to the assembly station by other robotic cubes, dismantled into component plates, tested and then re-assembled with plates that are fully operational. Potentially all kinds of things can go wrong and whole cubes may have to be discarded in the worst case. But based on probabilities, not all plates are likely to be damaged, and hence the resilience of this system is much improved over self repair by cube level replacement.

        The third scheme for self repair involves smaller robots 
servicing larger robots. Since the robot is fractal, it could send some of its fractally smaller machines to affect self repair inside large cubes. This form of self repair is much more involved but easy to understand. If the smaller cubes break, they would need to be discarded - but they cheaper and easier to mass produce. With large collections of cubes, self repair of this kind becomes extremely important. It increases reliability and reduces down time.

Self repair strategies are extremely important for realizing 
smaller machines as the technology shrinks down to 1 mm and below. Without self repair, a microscope is needed every time something breaks. Self repair is an important breakthrough for realizing micro and nanotechnology related end goals.

 There is also a fourth form of self repair and that of self 
manufacture. It is the ultimate goal. The electrostatic mechanisms can be manufactured by a molecular beam deposition device. The robots are 0.1 to 1 micron minimum in size and they are small enough and dexterous enough to maintain the molecular beam deposition device.

No comments:

Post a Comment